Nonlinear Optimization
-
-
In this work, we deal with Truncated Newton methods for solving large scale (possibly nonconvex) unconstrained optimization problems. In particular,we consider the use of amodified Bunch and Kaufman factorization for solving the Newton equation, at each (outer) iteration of the method. The Bunch...
-
-
We consider an iterative computation of negative curvature directions, in large-scale unconstrained optimization frameworks, needed for ensuring the convergence toward stationary pointswhich satisfy second-order necessary optimality conditions. We show that to the latter purpose, we can fruitfully...
-
-
Alternating direction methods of multipliers (ADMMs) are popular approaches to handle large scale semidefinite programs that gained attention during the past decade. In this paper, we focus on solving doubly nonnegative programs (DNN), which are semidefinite programs where the elements of the...
-
-
Prof. Joaquim Judice visited our department of Computer, Control, and Management
Engineering Antonio Ruberti (DIAG) of Sapienza University of Rome in the week 9th-15th
June 2019.
On Monday 10th, he gave a seminar entitled “Linear Complementarity Problems: Appli-
... -
In the context of augmented Lagrangian approaches for solving semidefinite programming problems, we investigate the possibility of eliminating the positive semidefinite constraint on the dual matrix by employing a factorization. Hints on how to deal with the resulting unconstrained maximization of...
-