The paper is concerned with multiobjective sparse optimization problems, i.e. the problem of simultaneously optimizing several objective functions and where one of these functions is the number of the non-zero components (or the ℓ-norm) of the solution. We propose to deal with the ℓ-norm by means...
Nonlinear Optimization
-
-
-
We introduce a class of positive definite preconditioners for the solution of large symmetric indefinite linear systems or sequences of such systems, in optimization frameworks. The preconditioners are iteratively constructed by collecting information on a reduced eigenspace of the indefinite...
-
-
Prof. Joaquim Judice visited our department of Computer, Control, and Management
Engineering Antonio Ruberti (DIAG) of Sapienza University of Rome in the week 9th-15th
June 2019.
On Monday 10th, he gave a seminar entitled “Linear Complementarity Problems: Appli-
... -
-
-
-
In the context of augmented Lagrangian approaches for solving semidefinite programming problems, we investigate the possibility of eliminating the positive semidefinite constraint on the dual matrix by employing a factorization. Hints on how to deal with the resulting unconstrained maximization of...
-