In recent years Reinforcement Learning (RL) has achieved remarkable results. Nonetheless RL algorithms prove to be unsuccessful in robotics applications where constraints satisfaction is involved, e.g. for safety. In this work we propose a control algorithm that allows to enforce constraints over a learned control policy. Hence we combine Nonlinear Model Predictive Control (NMPC) with control-state trajectories generated from the learned policy at each time step. We prove the effectiveness of our method on the Pendubot, a challenging underactuated robot.
Dettaglio pubblicazione
2020, Proceedings of the 21st IFAC World Congress, Pages 9637-9642
Enforcing Constraints over Learned Policies via Nonlinear MPC: Application to the Pendubot (04b Atto di convegno in volume)
Turrisi Giulio, Barros Carlos Barbara, Cefalo Massimo, Modugno Valerio, Lanari Leonardo, Oriolo Giuseppe
Gruppo di ricerca: Robotics