Multi-Task prioritized controllers generate complex behaviors for humanoids that concurrently satisfy several tasks and constraints. In our previous work we automatically learned the task priorities that maximized the robot performance in whole-body reaching tasks, ensuring that the optimized priorities were leading to safe behaviors. Here, we take the opposite approach: we optimize the task trajectories for whole-body balancing tasks with switching contacts, ensuring that the optimized movements are safe and never violate any of the robot and problem constraints. We use (1+1)-CMA-ES with Constrained Covariance Adaptation as a constrained black box stochastic optimization algorithm, with an instance of (1+1)-CMA-ES for bootstrapping the search. We apply our learning framework to the prioritized whole-body torque controller of iCub, to optimize the robot's movement for standing up from a chair.
Dettaglio pubblicazione
2017, 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids 2017): Birmingham, United Kingdom 15 – 17 November 2017, Pages 763-770
Safe trajectory optimization for whole-body motion of humanoids (04b Atto di convegno in volume)
Modugno Valerio, Nava Gabriele, Pucci Daniele, Nori Francesco, Oriolo Giuseppe, Ivaldi Serena
ISBN: 9781538646786; 978-1-5386-4679-3
Gruppo di ricerca: Robotics
keywords