We consider the problem of extracting a complete set of numerical parameters that characterize the robot dynamics, starting from the identified values of dynamic coefficients that linearly parametrize the robot dynamic equations. This information is relevant when realistic dynamic simulations have...
Nonlinear Optimization
-
-
-
-
We consider the convex quadratic linearly constrained problem with bounded variables and with huge and dense Hessian matrix that arises in many applications such as the training problem of bias support vector machines. We propose a decomposition algorithmic scheme suitable to parallel...
-
In this paper we study new preconditioners to be used within the nonlinear conjugate gradient (NCG) method, for large scale unconstrained optimization. The rationale behind our proposal draws inspiration from quasi-Newton updates, and its aim is to possibly approximate in some sense the inverse of...
-
-
-
-
-